Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio.
نویسندگان
چکیده
Plants sense vegetative shade as a reduction in the ratio of red light to far-red light (R:FR). Arabidopsis (Arabidopsis thaliana) responds to a reduced R:FR with increased elongation of the hypocotyl and the leaf petioles as well as with an acceleration of flowering time. The repressor of light signaling, CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), has been shown previously to be essential for the shade-avoidance response in seedlings. Here, we have investigated the roles of COP1 and the COP1-interacting SUPPRESSOR OF PHYA-105 (SPA) proteins in seedling and adult facets of the shade-avoidance response. We show that COP1 and the four SPA genes are essential for hypocotyl and leaf petiole elongation in response to low R:FR, in a fashion that involves the COP1/SPA ubiquitination target LONG HYPOCOTYL IN FR LIGHT1 but not ELONGATED HYPOCOTYL5. In contrast, the acceleration of flowering in response to a low R:FR was normal in cop1 and spa mutants, thus demonstrating that the COP1/SPA complex is only required for elongation responses to vegetative shade and not for shade-induced early flowering. We further show that spa mutant seedlings fail to exhibit an increase in the transcript levels of the auxin biosynthesis genes YUCCA2 (YUC2), YUC8, and YUC9 in response to low R:FR, suggesting that an increase in auxin biosynthesis in vegetative shade requires SPA function. Consistent with this finding, expression of the auxin-response marker gene DR5::GUS did not increase in spa mutant seedlings exposed to low R:FR. We propose that COP1/SPA activity, via LONG HYPOCOTYL IN FR LIGHT1, is required for shade-induced modulation of the auxin biosynthesis pathway and thereby enhances cell elongation in low R:FR.
منابع مشابه
Acceleration of flowering during shade avoidance in Arabidopsis alters the balance between FLOWERING LOCUS C-mediated repression and photoperiodic induction of flowering.
The timing of the floral transition in Arabidopsis (Arabidopsis thaliana) is influenced by a number of environmental signals. Here, we have focused on acceleration of flowering in response to vegetative shade, a condition that is perceived as a decrease in the ratio of red to far-red radiation. We have investigated the contributions of several known flowering-time pathways to this acceleration....
متن کاملActivated photoreceptors initiate at least two signaling cascades in Arabidopsis. First, phytochromes in their active conformation interact with PHYTOCHROME INTERACTING FACTORS (PIF
INTRODUCTION Light is an important informational cue with which to regulate many stages of plant growth and development. To sense the ambient light conditions, plants have evolved multiple photoreceptors, which include the red/far-red light (R/FR)-sensing phytochromes and the UV-A/blue light-sensing cryptochromes and phototropins (Chen et al., 2004; Whitelam and Halliday, 2007). Activated photo...
متن کاملPhytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time.
Shade avoidance in higher plants is regulated by the action of multiple phytochrome (phy) species that detect changes in the red/far-red ratio (R/FR) of incident light and initiate a redirection of growth and an acceleration of flowering. The phyB mutant of Arabidopsis is constitutively elongated and early flowering and displays attenuated responses to both reduced R/FR and end-of-day far-red l...
متن کاملLight-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex.
Phytochromes function as red/far-red photoreceptors in plants and are essential for light-regulated growth and development. Photomorphogenesis, the developmental program in light, is the default program in seed plants. In dark-grown seedlings, photomorphogenic growth is suppressed by the action of the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)/SUPPRESSOR OF phyA-105 (SPA) complex, which targets po...
متن کاملPhytochrome B in the mesophyll delays flowering by suppressing FLOWERING LOCUS T expression in Arabidopsis vascular bundles.
Light is one of the most important environmental factors that determine the timing of a plant's transition from the vegetative to reproductive, or flowering, phase. Not only daylength but also the spectrum of light greatly affect flowering. The shade of nearby vegetation reduces the ratio of red to far-red light and can trigger shade avoidance responses, including stem elongation and the accele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 160 4 شماره
صفحات -
تاریخ انتشار 2012